PDA

View Full Version : Understanding GPS coordinates...



Johnnyblaze2009
08-01-2011, 08:14 PM
trying to understand what and why each coordinate number represents... any help would be appreciated. Figure if I am out in ocean and my electronics fail on me, how to read and understand my location.... thanks.

DockRat
08-03-2011, 06:40 AM
I assume your talking about a small handheld ?
What electronics fail ? GPS is a electronics.
Do you have a hand held or a mounted larger unit with a chart chip ?

http://i978.photobucket.com/albums/ae261/dianeblair/2005%20Xpress%20X19%20Pro%20Aluminum%20Bass%20Boat/IMG_0172.jpg

You can use your GPS to get your location. Then you can look at your chart and find your location. Get a chart at West Marine. They have good laminated fishing charts of So Cal that show all the spots and outer banks and they have lattitude and longitude numbers on them.

Once you find your location on the chart then you can get a compass heading.
When you don't have any landmarks or too far offshore to see land your always watching your compass.

http://i1181.photobucket.com/albums/x428/mkguyvr/DSC09908.jpg


trying to understand what and why each coordinate number represents....

Basic concept of GPSA GPS receiver calculates its position by precisely timing the signals sent by GPS satellites high above the Earth. Each satellite continually transmits messages that include

the time the message was transmitted
precise orbital information (the ephemeris)
the general system health and rough orbits of all GPS satellites (the almanac).
The receiver uses the messages it receives to determine the transit time of each message and computes the distance to each satellite. These distances along with the satellites' locations are used with the possible aid of trilateration, depending on which algorithm is used, to compute the position of the receiver. This position is then displayed, perhaps with a moving map display or latitude and longitude; elevation information may be included. Many GPS units show derived information such as direction and speed, calculated from position changes.

Three satellites might seem enough to solve for position since space has three dimensions and a position near the Earth's surface can be assumed. However, even a very small clock error multiplied by the very large speed of light[31] — the speed at which satellite signals propagate — results in a large positional error. Therefore receivers use four or more satellites to solve for the receiver's location and time. The very accurately computed time is effectively hidden by most GPS applications, which use only the location. A few specialized GPS applications do however use the time; these include time transfer, traffic signal timing, and synchronization of cell phone base stations.

Although four satellites are required for normal operation, fewer apply in special cases. If one variable is already known, a receiver can determine its position using only three satellites. For example, a ship or aircraft may have known elevation. Some GPS receivers may use additional clues or assumptions (such as reusing the last known altitude, dead reckoning, inertial navigation, or including information from the vehicle computer) to give a less accurate (degraded) position when fewer than four satellites are visible.[32




any help would be appreciated. Figure if I am out in ocean and my electronics fail on me, how to read and understand my location.... thanks.

Position calculation introduction
Two sphere surfaces intersecting in a circle
Surface of sphere Intersecting a circle (not a solid disk) at two points
To provide an introductory description of how a GPS receiver works, error effects are deferred to a later section. Using messages received from a minimum of four visible satellites, a GPS receiver is able to determine the times sent and then the satellite positions corresponding to these times sent. The x, y, and z components of position, and the time sent, are designated as where the subscript i is the satellite number and has the value 1, 2, 3, or 4. Knowing the indicated time the message was received , the GPS receiver can compute the transit time of the message as . Assuming the message traveled at the speed of light, c, the distance traveled or pseudorange, can be computed as .

A satellite's position and pseudorange define a sphere, centered on the satellite, with radius equal to the pseudorange. The position of the receiver is somewhere on the surface of this sphere. Thus with four satellites, the indicated position of the GPS receiver is at or near the intersection of the surfaces of four spheres. In the ideal case of no errors, the GPS receiver would be at a precise intersection of the four surfaces.

If the surfaces of two spheres intersect at more than one point, they intersect in a circle. The article trilateration shows this mathematically. A figure, Two Sphere Surfaces Intersecting in a Circle, is shown below. Two points where the surfaces of the spheres intersect are clearly shown in the figure. The distance between these two points is the diameter of the circle of intersection. The intersection of a third spherical surface with the first two will be its intersection with that circle; in most cases of practical interest, this means they intersect at two points.[35] Another figure, Surface of Sphere Intersecting a Circle (not a solid disk) at Two Points, illustrates the intersection. The two intersections are marked with dots. Again the article trilateration clearly shows this mathematically.

For automobiles and other near-earth vehicles, the correct position of the GPS receiver is the intersection closest to the Earth's surface.[36] For space vehicles, the intersection farthest from Earth may be the correct one.

The correct position for the GPS receiver is also the intersection closest to the surface of the sphere corresponding to the fourth satellite.

[edit] Correcting a GPS receiver's clockOne of the most significant error sources is the GPS receiver's clock. Because of the very large value of the speed of light, c, the estimated distances from the GPS receiver to the satellites, the pseudoranges, are very sensitive to errors in the GPS receiver clock; for example an error of one microsecond (0.000 001 second) corresponds to an error of 300 metres (980 ft). This suggests that an extremely accurate and expensive clock is required for the GPS receiver to work. Because manufacturers prefer to build inexpensive GPS receivers for mass markets, the solution for this dilemma is based on the way sphere surfaces intersect in the GPS problem.


Diagram depicting satellite 4, sphere, p4, r4, and da
It is likely that the surfaces of the three spheres intersect, because the circle of intersection of the first two spheres is normally quite large, and thus the third sphere surface is likely to intersect this large circle. It is very unlikely that the surface of the sphere corresponding to the fourth satellite will intersect either of the two points of intersection of the first three, because any clock error could cause it to miss intersecting a point. However, the distance from the valid estimate of GPS receiver position to the surface of the sphere corresponding to the fourth satellite can be used to compute a clock correction. Let denote the distance from the valid estimate of GPS receiver position to the fourth satellite and let denote the pseudorange of the fourth satellite. Let . is the distance from the computed GPS receiver position to the surface of the sphere corresponding to the fourth satellite. Thus the quotient, , provides an estimate of

(correct time) – (time indicated by the receiver's on-board clock), and the GPS receiver clock can be advanced if is positive or delayed if is negative.
However, it should be kept in mind that a less simple function of may be needed to estimate the time error in an iterative algorithm as discussed in the Navigation equations section.

[edit] StructureThe current GPS consists of three major segments. These are the space segment (SS), a control segment (CS), and a user segment (U.S.).[37] The U.S. Air Force develops, maintains, and operates the space and control segments. GPS satellites broadcast signals from space, and each GPS receiver uses these signals to calculate its three-dimensional location (latitude, longitude, and altitude) and the current time.[38]

The space segment is composed of 24 to 32 satellites in medium Earth orbit and also includes the payload adapters to the boosters required to launch them into orbit. The control segment is composed of a master control station, an alternate master control station, and a host of dedicated and shared ground antennas and monitor stations. The user segment is composed of hundreds of thousands of U.S. and allied military users of the secure GPS Precise Positioning Service, and tens of millions of civil, commercial, and scientific users of the Standard Positioning Service (see GPS navigation devices).

[edit] Space segmentSee also: GPS satellite and List of GPS satellite launches.

Unlaunched GPS satellite on display at the San Diego Air & Space Museum
A visual example of the GPS constellation in motion with the Earth rotating. Notice how the number of satellites in view from a given point on the Earth's surface, in this example at 45°N, changes with time.
The space segment (SS) is composed of the orbiting GPS satellites, or Space Vehicles (SV) in GPS parlance. The GPS design originally called for 24 SVs, eight each in three approximately circular orbits,[39] but this was modified to six orbital planes with four satellites each.[40] The orbits are centered on the Earth, not rotating with the Earth, but instead fixed with respect to the distant stars.[41] The six orbit planes have approximately 55° inclination (tilt relative to Earth's equator) and are separated by 60° right ascension of the ascending node (angle along the equator from a reference point to the orbit's intersection).[42] The orbits are arranged so that at least six satellites are always within line of sight from almost everywhere on Earth's surface.[43] The result of this objective is that the four satellites are not evenly spaced (90 degrees) apart within each orbit. In general terms, the angular difference between satellites in each orbit is 30, 105, 120, and 105 degrees apart which, of course, sum to 360 degrees.

Orbiting at an altitude of approximately 20,200 km (12,600 mi); orbital radius of approximately 26,600 km (16,500 mi), each SV makes two complete orbits each sidereal day, repeating the same ground track each day.[44] This was very helpful during development because even with only four satellites, correct alignment means all four are visible from one spot for a few hours each day. For military operations, the ground track repeat can be used to ensure good coverage in combat zones.

As of March 2008[update],[45] there are 31 actively broadcasting satellites in the GPS constellation, and two older, retired from active service satellites kept in the constellation as orbital spares. The additional satellites improve the precision of GPS receiver calculations by providing redundant measurements. With the increased number of satellites, the constellation was changed to a nonuniform arrangement. Such an arrangement was shown to improve reliability and availability of the system, relative to a uniform system, when multiple satellites fail.[46] About nine satellites are visible from any point on the ground at any one time (see animation at right).

[edit] Control segment
Ground monitor station used from 1984 to 2007, on display at the Air Force Space & Missile Museum
The control segment is composed of

1.a master control station (MCS),
2.an alternate master control station,
3.four dedicated ground antennas and
4.six dedicated monitor stations
The MCS can also access U.S. Air Force Satellite Control Network (AFSCN) ground antennas (for additional command and control capability) and NGA (National Geospatial-Intelligence Agency) monitor stations. The flight paths of the satellites are tracked by dedicated U.S. Air Force monitoring stations in Hawaii, Kwajalein, Ascension Island, Diego Garcia, Colorado Springs, Colorado and Cape Canaveral, along with shared NGA monitor stations operated in England, Argentina, Ecuador, Bahrain, Australia and Washington DC.[47] The tracking information is sent to the Air Force Space Command's MCS at Schriever Air Force Base 25 km (16 miles) ESE of Colorado Springs, which is operated by the 2nd Space Operations Squadron (2 SOPS) of the U.S. Air Force. Then 2 SOPS contacts each GPS satellite regularly with a navigational update using dedicated or shared (AFSCN) ground antennas (GPS dedicated ground antennas are located at Kwajalein, Ascension Island, Diego Garcia, and Cape Canaveral). These updates synchronize the atomic clocks on board the satellites to within a few nanoseconds of each other, and adjust the ephemeris of each satellite's internal orbital model. The updates are created by a Kalman filter that uses inputs from the ground monitoring stations, space weather information, and various other inputs.[48]

Satellite maneuvers are not precise by GPS standards. So to change the orbit of a satellite, the satellite must be marked unhealthy, so receivers will not use it in their calculation. Then the maneuver can be carried out, and the resulting orbit tracked from the ground. Then the new ephemeris is uploaded and the satellite marked healthy again.

[edit] User segment
GPS receivers come in a variety of formats, from devices integrated into cars, phones, and watches, to dedicated devices such as those shown here from manufacturers Trimble, Garmin and Leica (left to right).
The user segment is composed of hundreds of thousands of U.S. and allied military users of the secure GPS Precise Positioning Service, and tens of millions of civil, commercial and scientific users of the Standard Positioning Service. In general, GPS receivers are composed of an antenna, tuned to the frequencies transmitted by the satellites, receiver-processors, and a highly stable clock (often a crystal oscillator). They may also include a display for providing location and speed information to the user. A receiver is often described by its number of channels: this signifies how many satellites it can monitor simultaneously. Originally limited to four or five, this has progressively increased over the years so that, as of 2007[update], receivers typically have between 12 and 20 channels.[49]


A typical OEM GPS receiver module measuring 15×17 mm.
GPS receivers may include an input for differential corrections, using the RTCM SC-104 format. This is typically in the form of an RS-232 port at 4,800 bit/s speed. Data is actually sent at a much lower rate, which limits the accuracy of the signal sent using RTCM. Receivers with internal DGPS receivers can outperform those using external RTCM data. As of 2006[update], even low-cost units commonly include Wide Area Augmentation System (WAAS) receivers.

A typical GPS receiver with integrated antenna.
Many GPS receivers can relay position data to a PC or other device using the NMEA 0183 protocol. Although this protocol is officially defined by the National Marine Electronics Association (NMEA),[50] references to this protocol have been compiled from public records, allowing open source tools like gpsd to read the protocol without violating intellectual property laws. Other proprietary protocols exist as well, such as the SiRF and MTK protocols. Receivers can interface with other devices using methods including a serial connection, USB, or Bluetooth.

http://i266.photobucket.com/albums/ii254/pcchan_photo/Overwhelmed.jpg DR :LOL:

Which Way Out
08-03-2011, 09:02 AM
Good info DR, if your a Rocket Scientist:ROFL:
JK....

If you want to practice using the GPS system without being on the water and have either a hand held, a TomTom or other type of NAV. device. You can log on to geocaching.com. There you can search for hidden items using GPS coordinates. Fun to do with kids, when its not fishing season of course. Check it out. Its like a savager hunt only High Tect. There are hidden Caches all over the world and I would bet there's more then 1 within a mile of your location right now..

PM me if you have any ?s on it.
Bill